Log-concavity and LC-positivity

نویسندگان

  • Yi Wang
  • Yeong-Nan Yeh
چکیده

A triangle {a(n, k)}0≤k≤n of nonnegative numbers is LC-positive if for each r, the sequence of polynomials ∑n k=r a(n, k)q k is q-log-concave. It is double LC-positive if both triangles {a(n, k)} and {a(n, n − k)} are LC-positive. We show that if {a(n, k)} is LC-positive then the log-concavity of the sequence {xk} implies that of the sequence {zn} defined by zn = ∑n k=0 a(n, k)xk, and if {a(n, k)} is double LC-positive then the log-concavity of sequences {xk} and {yk} implies that of the sequence {zn} defined by zn = ∑n k=0 a(n, k)xkyn−k. Examples of double LC-positive triangles include the constant triangle and the Pascal triangle. We also give a generalization of a result of Liggett that is used to prove a conjecture of Pemantle on characteristics of negative dependence. MSC: 05A20; 15A04; 05A15; 15A48

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 7 N ov 2 00 6 Log - concavity and LC - positivity

A triangle {a(n, k)}0≤k≤n of nonnegative numbers is LC-positive if for each r, the sequence of polynomials ∑n k=r a(n, k)q k is q-log-concave. It is double LC-positive if both triangles {a(n, k)} and {a(n, n − k)} are LC-positive. We show that if {a(n, k)} is LC-positive then the log-concavity of the sequence {xk} implies that of the sequence {zn} defined by zn = ∑n k=0 a(n, k)xk, and if {a(n, ...

متن کامل

Schur positivity and the q-log-convexity of the Narayana polynomials

We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity re...

متن کامل

Log-concavity and Inequalities for Chi-square, F and Beta Distributions with Applications in Multiple Comparisons

In several recent papers log-concavity results and related inequalities for a variety of distributions were obtained. This work is supposed to derive a nearly complete list of corresponding properties concerning the cdf’s and some related functions for Beta as well as for central and non-central Chi-square and F distributions, where hitherto only partial results were available. To this end we i...

متن کامل

Total positivity of Riordan arrays

An infinite matrix is called totally positive if its minors of all orders are nonnegative. A nonnegative sequence (an)n≥0 is called log-convex (logconcave, resp.) if aiaj+1 ≥ ai+1aj ( aiaj+1 ≤ ai+1aj , resp.) for 0 ≤ i < j . The object of this talk is to study various positivity properties of Riordan arrays, including the total positivity of such a matrix, the log-convexity of the 0th column an...

متن کامل

Strong log-concavity is preserved by convolution

We review and formulate results concerning strong-log-concavity in both discrete and continuous settings. Although four different proofs of preservation of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong log-concavity under convolution has apparently not been investigated previously in the continuous c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2007